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Protecting the Developing Brains of Children from the Harmful 
Effects of Plastics and Toxic Chemicals in Plastics  

Recommendations for Essential Policy Reforms in the New Global Treaty on 
Plastics  

As experts in the effects of toxic chemicals on neurodevelopment, and as scientists, clinicians, 
and children’s health advocates in Project TENDR (Targeting Environmental Neuro- 

Development Risks), we are deeply concerned about mounting scientific evidence showing that 
plastics and toxic chemicals in plastics are contributing to neurodevelopmental disabilities and 
cognitive deficits in children.   

In this briefing paper, we summarize the evidence of widespread fetal and early childhood 
exposures to plastics and resulting harm to children’s brains and offer recommendations to 
strengthen the global treaty on plastics pollution to ensure it addresses the toxicity and 
proliferation of plastics and petrochemicals.    
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Prevalence of Neurodevelopmental Disorders  
One in six children in the United States has a developmental disability, including learning 
disabilities, intellectual impairment, autism, and attention deficit and hyperactivity disorder 
(ADHD), and the overall prevalence of most of these disorders increased from 2009-2017.1 2   

Children living in poverty have higher prevalence for all developmental disabilities.3 4 Prevalence 
rates by race and ethnicity vary by disorder, with Black children followed by White children 
having the highest rates for autism, and Black children followed by American Indian or Alaska 
Native children having the highest rates of learning disabilities. White children have the highest 
rate of ADHD, followed by Black children.5     

Reported rates of developmental disabilities in children vary widely by country and region, and 
systematic reviews seeking to determine global prevalences often include data only for high 
income countries (HICs). A systematic umbrella review published in 2023 compared global rates 
for ADHD, autism, intellectual disability, and dyslexia with rates reported in the 2019 Global 
Burden of Disease (GBD) study, which included low- and middle-income countries (LMICs). The 
review rates (which largely exclude LMICs) compared to GBD rates are as follows: ADHD: 3.7% 
vs. 1.9%; autism: 0.6 – 1% vs. 0.4%; intellectual disability: GBD rate only, 3.1% overall, 1.5% for 
HIC. Dyslexia is not included in the GBD; the systematic umbrella review found a rate of 7.1% for 
both HICs and MICs.6   
  

Learning, developmental, and intellectual disorders are complex, arising from multiple, 
interacting genetic and environmental factors. While we cannot change our genes, we can 
reduce the onslaught of plastics and associated toxic chemicals that are contributing to lasting 
problems in cognition, behavior, and attention.  

Global Crisis of Plastics Production & Waste  
Global production of plastics has grown exponentially since the 1950s, reaching 400 million 
metric tons in 2022.7 Global production of plastics is projected to quadruple by 2050.8 Oil and 
gas extraction that feeds plastics production is a major and rapidly growing source of air 
pollution and greenhouse gases (including CO2 and methane). In 2019 alone, global plastics 
production generated 1.8 billion tons of greenhouse gases and led to 22 million tons of plastic 
entering the terrestrial and aquatic environment in the form of macroplastics (such as bottles), 
which can disintegrate in the environment into tiny particles known as microplastics (1nm to 
5mm), and nano-plastics (<0.1µg).9   

The United States generates more plastic waste per capita than any country in the world. 
According to the EPA, plastic waste in the U.S. grew from less than ten million tons in the 1980s 
to nearly 40 million tons today.10 Globally, packaging accounts for the largest proportion of 
plastics waste, making up 40 percent of all plastic waste generated.11   
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Plastics and Petrochemical Additives  
The vast majority of plastics in use today are refined from oil, natural gas, and coal into chemical 
monomers, the building blocks of plastic polymers. Packaging is commonly made of five 
polymers - polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene 
(PS), and polyvinyl chloride (PVC).12   
  
Thousands of petrochemicals are added to plastic polymers —including fillers, plasticizers, 
colorants, stabilizers, lubricants, foaming agents, flame retardants, and antistatic agents— 
turning plastics into vectors that can deliver these chemicals into human bodies.13 A 2024 
report found there are 16,325 chemicals potentially used or present in plastic materials and 
products, with 25% of these classified as hazardous and 66% not yet assessed for safety. The 
report determined that no plastic chemical can be classified as “safe.”14   
  

In a recently compiled data set of 906 chemicals associated  with plastic packaging, researchers 
declared 126 of the plastics additives as toxic, and many of those as neurotoxic.15 For example, 
the chemical classes of ortho-phthalates, bisphenols, and polybrominated diphenyl ethers 
(PBDE) flame retardants are known neurotoxicants.16 17 18  Other chlorinated and brominated 
flame retardants, organophosphate flame retardants, and chlorinated paraffins are likely 
neurotoxic.19 20 A class of high-volume chemicals in plastics, benzotriazole UV stabilizers, disrupt 
endocrine function, which in turn can impair brain development.21    

Modes of Exposure  
The body of evidence is growing that humans are exposed not only to the chemicals added to 
plastics but directly to plastic materials in the form of microplastics and nano-plastics; as many 
as 240,000  plastic particles (90% nanoparticles) have been found in a liter of bottled water.22 
Plastic particles and chemical additives can be ingested from food and water, inhaled from air 
and dust, absorbed through the skin, and are even injected via plastic intravenous tubing during 
medical procedures.   

Diet is a particularly important exposure pathway for some compounds used in plastics such as 
phthalates, which leach into food from packaging materials, plastic equipment used in 
commercial dairy operations, lid gaskets, food preparation gloves, and conveyor belts.23 
Consumption of dairy and oily foods including fast food and packaged foods, are important 
dietary sources of phthalate exposures.24 Furthermore, bisphenol A and replacement 
bisphenols also leach out of epoxy resin linings of food cans and bottle tops, as well as 
polycarbonate bottles.25 26  

Chemical additives also leach from plastics in our homes and concentrate in dust.27 Relatively 
high levels of many of the compounds added to plastics, such as phthalates, organohalogen and 
organophosphate flame retardants, and phenols have frequently been measured at 
concentrations above 1000 ng/g dust.28 Household dust is an important exposure route for toxic 
chemicals, especially for infants and children who spend considerable time on or near the floor 
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where they may ingest or inhale the dust.29 Plastic based building products containing 
phthalates such as vinyl flooring and wall coverings have a large surface area from which 
phthalates can migrate into the indoor air and household dust exposing residents.30   

Plastics that contain chlorine or bromine, such as polyvinyl chloride (PVC), when incinerated for 
“waste-to-energy” conversion can result in harmful exposures to neurotoxic chemicals such as 
dioxins and furans, some of the most highly toxic chemicals, exposing workers and residents of 
surrounding communities. They also contribute to environmental disasters such as the East 
Palestine, Ohio, train derailment that involved the burning of vinyl chloride, used to make PVC.  

Plastic Particles In Utero, in Infants, and Children  
Babies today enter the world with their brains and bodies already contaminated with plastics. 
Micro- and nano-plastic particles have been found in the placenta31 32 and newborns’ first 
stool,33 with exposures continuing through breastmilk and infant formula.34 35 Brains are targets 
as microplastics can be transported across the blood-brain-barrier and induce inflammation as 
observed in rodent experiments.36 Even short-term exposures to microplastics induce 
behavioral changes in mice and alter immune responses in the brain.37   

Micro- and nano-plastics penetrate cell walls and are 
toxic because they impair mitochondrial function in 
cells.38 Mitochondria are responsible for the cell’s 
energy production and play an important role in 
placental function. A 2024 review paper in the Lancet 
summarized how exposure to nano- and microplastics 
can lead to adverse effects in multiple organ systems in 
animals and humans through inflammation, immune 
impairment, oxidative stress, alterations in biochemical 
and energy metabolic processes, disruption to organ 
development, and carcinogenicity.39  

Recently, a Hawaiian study of banked placenta samples 
reported that 60% of placentas contained plastic 
particles in 2006, 90% in 2013, and 100% in 2021.40 
The presence of plastic particles in placental tissues 
both on the maternal and fetal sides41 42 is concerning 
as the placenta exchanges nutrients, antibodies, gases, 
and waste products between the mother and fetus. 
The growth and development of the fetus is supported 
by the placenta. Chemical additives to plastics and the 
plastic particles themselves can disrupt placental 
endocrine and immune function as well as its lipid and 
energy metabolism,43 44 45 46 affecting not only overall 
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fetal growth47, but brain growth and development, and behavior including motor function, 
learning, and memory.48 49 50     

Some babies are at especially high risk of harm from exposure to plastic particles - especially 
those born too small or prematurely who are at higher risk for developmental disabilities 
already. A recent study detected microplastics in the placentas from all babies who were small 
for gestational age but in only 3 of 30 placentas in normal weight babies, and microplastics 
exposure was inversely related to birthweight, length, head circumference, and 1-minute Apgar 
score.51 52  

Plastics Impacts on Neurodevelopment  
For some classes of chemicals comprising or added to plastics, there is overwhelming 
evidence that prenatal and early childhood exposures are contributing to problems with child 
brain development and neurodevelopmental disorders. Here we provide brief summaries of 
the scientific evidence of neurological harm from some of the problematic classes of chemicals 
used in plastics, including bisphenols, phthalates, and organohalogen and organophosphate 
flame retardants.   

These chemical classes and their substitutes leach from plastics into food and dust53, and are 
widely found in pregnant women, infants, and children, passing to the fetus via the placenta, 
and to the infant via breastmilk and formula.54   

Ortho-Phthalates (Phthalates) are a group of chemicals incorporated into plastics to 
make them more durable and flexible. They are widely used in food and drink packaging, 
personal care products, and cosmetics, building materials such as vinyl flooring and wall 
coverings, medical tubing and devices, printing inks, pesticides, and synthetic  
clothing.55 Phthalates are not chemically bound to the products that contain them, and readily 
migrate into dust, food, and the environment.56  

The class of ortho-phthalates has been clearly established as neurotoxic, including  di-
2ethylhexyl phthalate (DEHP), di-butyl phthalate (DBP), and butylbenzyl phthalate (BBzP).57 A 
substantial and growing body of evidence documents the impacts of prenatal exposure to 
phthalates on brain development, including cognitive and motor function being affected in the 
preschool period58 59 60 61, or later childhood/early adolescence62 63, impacts on behavior, 
including poor executive function, attention and working memory64 65 66, delayed language 
development67 68, reduced IQ69, and preschool and childhood ADHD.70 71   

Phthalate exposure in pregnancy has been linked to sex-specific changes in brain structural 
development, including changes in gray and white matter volumes, assessed by MRI, that may 
reduce IQ.72  
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There has been a reduction in use of DEHP, but there is emerging evidence that the typical 
replacement, DiNP, can also harm child brain development.73 74 Phthalates are also 
antiandrogenic and impair development of the male reproductive tract.75  

Organohalogen (Brominated or Chlorinated) Flame Retardants (OFRs) are a large 
group of industrial chemicals that are added to furniture, electronics, and other materials to 
suppress fires. OFRs are not chemically bound to plastics and can escape into indoor 
environments, accumulating in dust and leading to exposure via ingestion and other 
pathways.76 77   

  
Polybrominated diphenyl ethers (PBDEs) are extensively researched OFRs; many studies find 
PBDEs are associated with learning, behavioral, or intellectual impairment.78 79 80 81 Children 
with autism may be more susceptible to the effects of PBDEs through suppression of their 
immune response.82 The combination of PBDEs’ adverse effects on children’s brain 
development and widespread exposure is indicative of a significant public health problem with 
large costs to society. A study of costs associated with lost IQ points in Europe from PBDEs and 
organophosphate pesticides estimated annual costs of greater than 150 billion euros.83   
  

The international Stockholm Convention on Persistent Organic Pollutants (“POPs Treaty”) has 
banned certain brominated flame retardants including PBDEs (the penta- and octa- BDE 
commercial mixtures and deca-BDE), hexabromocyclododecane (HBCD), and  
hexabromobiphenyl (HBB).84 The U.S. EPA has restricted certain uses of PBDEs, including for 
deca-BDE in 2021,85 however these restrictions have not gone into effect for some uses.86 
PBDEs are persistent, ubiquitous in the environment, and found in many consumer products 
made from plastics.87   
  

For example, pentaBDE is still in high concentrations in older furniture foams in current use and 
may contribute to exposure disparities among people with lower incomes.88 In addition, plastics 
that contain PBDEs are allowed to be recycled into new products such as toys, food handling 
utensils, and food containers.89 High levels of polybrominated dibenzo-p-dioxins and 
dibenzofurans (PBDD/Fs) have also been found in toys and other consumer products 
manufactured from black plastics containing PBDEs and other brominated flame retardants.90   
  
Due to national and international restrictions, PBDEs have been largely replaced by non-PBDE 
organohalogen flame retardants as well as organophosphate flame retardants. Emerging 
evidence on non-PBDE organohalogen flame retardants demonstrates concerns with child brain 
development. For example, exposure to hexabromocyclododecane (HBCD) has been associated 
with reduced cognitive function in adolescents,91 while tetrabromobisphenol A (TBPPA) has 
been shown to have neuroendocrine and neurobehavior toxicity in animal studies.92   

Organophosphate Flame Retardants - Recent studies evaluating the  

neurodevelopmental effects of organophosphate ester flame retardants (OPEs), note concerns 
for a range of adverse outcomes associated with exposures during pregnancy.93 Over the last 6 
years, studies of OPEs in children have found associations with reduced fine motor skills, 
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behavior problems, reduced language abilities, lower working memory, and higher risks of 
attention disorders.94 95 96  

Bisphenols - Bisphenol A (BPA) is a high production volume chemical with an estimated 5-6 
billion pounds being produced annually, mostly used in polycarbonate plastics.97 The 
neurotoxicity of BPA and its primary replacement chemicals, bisphenol S, bisphenol F, and 
bisphenol AF (BPS, BPF,BPAF) have been studied extensively in animal and cell models.98 99 100 A 
systematic review of BPA rodent exposure during pregnancy, infancy, or adolescence reported 
deficits in memory or cognitive function.101  

  
Human studies of bisphenols showed that BPA exposures 
contribute to ADHD, autism, depression, emotional 
problems, anxiety, and cognitive disorders in children.102 
Additionally, early BPA exposure has been associated with 
hyperactivity in boys and girls.103   
  

Less is known about the more recently introduced BPA 
substitutes, although prenatal BPF exposure has been 
associated with lower IQ scores in 7-year-olds104 105 and 
neurodevelopmental delays in infants,106 while BPAF 
exposure may have neurodevelopmental impacts in 
infants.107  Human studies that examined the impact of 
multiple bisphenols showed greater contribution to 
neurodevelopmental impacts from the substitutes than 
from BPA.108 109 Likewise, comparison animal studies 
suggest that BPA replacement chemicals are as or more 
neurotoxic than BPA itself.110  

Issues of Regrettable Substitutions  
It is critical that we prevent harm to children’s brain health by eliminating non-essential uses 
of plastics and harmful classes of chemicals, rather than trying to eliminate toxic compounds 
one by one.111    

Numerous compounds can be used for the same purpose in plastics, and generally when one is 
eliminated, another is selected.  As described above for phthalates, bisphenols, and flame 
retardants, the replacement chemicals often prove to be equally or more neurotoxic than the 
initial chemical additives, referred to as regrettable substitution.  

For example, consider U.S. population exposure to the neurotoxic classes of plastics additives 
described above:  

• Exposures to di-n-butyl phthalate (DnBP), BBzP, and DEHP have declined, while 
exposures to replacement phthalates such as DiNP, diisobutyl phthalate (DiBP), and 
DEHTP have increased.112  
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• Similarly, as BPA was phased out, levels of BPS and BPF in people have risen, and all 
compounds have very similar structures and thus similar modes of toxicity.113   

• As PBDEs are phased out, OPE flame retardants have become ubiquitous in people and 
are now found at even higher levels in people than during peak exposure levels to 
PBDEs.114  

Recommendations for Strengthening the Global Treaty on 
Plastics Pollution  
We call for a strong plastics treaty that protects the 
health of children’s developing brains by reducing 
the production and use of plastics and subsequent 
generation of plastic particles, and by preventing 
the harmful effects of plastics throughout their life 
cycle. An effective treaty will include legally binding 
provisions to:  
  
1. Substantially reduce and cap plastics 

production toward elimination of single-use 
plastics and other non-essential uses of plastics;  

  
2. Phase out use of the most toxic plastic polymers, including polyvinyl chloride, and 

polystyrene;  
 

3. Phase out use of neurotoxic chemical classes as additives in plastic, including at a 
minimum, brominated and chlorinated flame retardants, organophosphate ester flame 
retardants, phthalates, chlorinated paraffins, UV stabilizers, and bisphenols.  

  

a. Governments should start by immediately banning these chemical classes from use 
in plastic food contact materials.   

i. A recent review of different types of interventions intended to reduce 
people’s exposures to bisphenols and phthalates found that policies that 
restrict the use of phthalates and BPA in goods and packaging resulted in 
widespread, long-term decreases in exposures, while interventions aimed at 
dietary changes were much less effective in reducing exposures.115  

  

b. It is imperative to ban classes of toxic additives in plastics to avoid regrettable 
substitution.   

i. In some cases, there are alternative solutions to using chemicals at all, as 
with changes to California state regulations that enabled furniture 
manufacturers to meet flammability standards without use of flame 
retardant chemicals.116  
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4. Ban intentionally added nanoplastics and microplastics in products such as cosmetics, 
cleaning products, and toys;  
 

5. Require full transparency and public disclosure of information in accessible forms that 
include identification and reporting of all chemicals used in the production of plastics as well 
as plastics additives;   

  
6. Ensure that disposal and recycling of plastics does not result in releases of toxic 

substances into the environment, and that toxic substances are not present in products 
made from recycled plastic;   

  
7. Prevent incineration (which by definition includes pyrolysis and gasification) of plastics— 

including “chemical recycling,” “advanced recycling,” and “waste-to-energy” schemes, which 
are not true recycling and merely perpetuate the toxicity of plastic.  

  

*  *  *  * 

 

Project TENDR is a program of The Arc, a national non-profit organization advocating for and with 

people with intellectual and developmental disabilities and serving them and their families. 
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